

26th World Gas Conference

1 – 5 June 2015 – Paris, France

WOC 5-5

INVESTIGATION OF THE EFFECTS OF CHANGING GAS QUALITIES ON INDUSTRIAL COMBUSTION PROCESSES

Dr.-Ing. Jörg Leicher Gas- und Wärme-Institut Essen e.V.

Authors and Acknowledgments

- Jörg Leicher*, Anne Giese, Klaus Görner, Gas- und Wärme-Institut Essen e.V., Essen (GWI), Germany
- Matthias Werschy, Steffen Franke, Hartmut Krause, DBI- Gas- und Umwelttechnik GmbH, Leipzig (DBI-GUT), Germany
- Holger Dörr, DVGW-Forschungsstelle am Engler-Bunte-Institut des Karlsruher Institut f
 ür Technology, Karlsruhe (EBI), Germany
- The work presented here was funded by DVGW e.V., the German Technical and Scientific Association for Gas and Water.

Natural Gas in Industrial Applications

- Industrial applications account for about 1/3 of Europe's consumption of natural gas.
- Natural gas is used to provide process heat in many industries, from the food industry to high temperature processes in glass, ceramics and metals manufacturing. The chemical industry uses gas not only as fuel, but also as a feedstock.
- About 85 % of process heat in Germany are produced by natural gas.
- Manufacturing processes have very high demands for efficiency, process stability, pollutant emissions and of course product quality. They often require a tight control of furnace conditions. Constant local gas qualities are a distinct locational advantage.
- The markets are changing : EU H-Gas harmonization, LNG, renewables...

Measurements at Industrial Furnace near Leipzig, 2011

4

Industrial Experience: Glass Industry

- The glass industry is generally considered to be very sensitive to gas quality fluctuations. Gas is used in many different production steps: melting, feeders, shaping, annealing, ...
- A poll carried out by the Research Association of the German Glass Industry (HVG) in 2011 shows that about 75% of the participants (90% of German glass manufacturing capacity) have already encountered problems due to fluctuating gas qualities.
- Issues range from loss of efficiency and reduced product quality to increased pollutant emissions and reduced process stability.

CFD Case Study: Glass Melting Furnace

1.05

20 °C

Operating Parameters (Reference Case):

- Load Burner 1: 2000 kW
- 2000 kW - Load Burner 2:
- Air Ratio:
- Gas Temperature:
- Air Temperature:

Approach:

- Test gases at the extremes of German gas quality code DVGW G 260 were defined
- Process was adjusted for reference gas and then supplied with another test gas
- Steady CFD simulations were used to examine the impact of a gas quality change
- Various furnace control strategies were investigated

Scenario I

- Fuel gas composition changes from H-Gas Ref._GWI to H-Gas 1_GWI or H-Gas 3_GWI... an oxygen sensor detects the change.
- Volume flow of air is adapted for constant λ.
- But: volume flow of fuel remains constant !

Superior Wobbe Index [kWh/m³]

Gas Type	H _{i.n} [kWh/m³]	Q _{Burner} [kW]	ρ _{n.Gas} [kg/m³]	V _{n,Gas} [m³/h]	Air _{min} [m³ _{Air} /m³ _{Fuel}]	λ [-]	V _{n,Air} [m³/h]
H-Gas RefGWI	10.436	4000	0.8004	383.3	9.99	1.05	4021
H-Gas 3_GWI	11.884	4554	0.9043	383.3	11.27	1.05	4536
H-Gas 1_GWI	9.114	3494	0.7110	383.3	8.65	1.05	3482

Scenario I: Total Heat Fluxes

Scenario II: Worst Case

- Fuel gas composition changes from H-Gas Ref._GWI to H-Gas 1_GWI or H-Gas 3_GWI... and no one notices !
- Volume flows of **both** fuel and oxidizer remain constant.
- Definitely a worst case scenario !

Superior Wobbe Index [kWh/m³]

Gas Type	H _{i,n} [kWh/m³]	Q _{Burner} [kW]	P _{n,Gas} [kg/m³]	V _{n,Gas} [m³/h]	Air _{min} [m³ _{Air} /m³ _{Fuel}]	λ [-]	V _{n,Air} [m³/h]
H-Gas RefGWI	10.436	4000	0.8004	383.3	9.99	1.05	4021
H-Gas 3_GWI	11.884	4554	0.9043	383.3	11.27	0.93	4021
H-Gas 1_GWI	9.114	3494	0.7110	383.3	8.65	1.21	4021

Scenario II: Flue Gas Compositions

H-Gas Ref._GWI

H-Gas 3_GWI

H-Gas 1_GWI

Total Load	kW	4000	Total Load	kW	4554	Total Load	kW	3494
Air Ratio	-	1.05	Air Ratio	-	0.93	Air Ratio	-	1.21
CO2	Mole-%	11.38	CO ₂	Mole-%	11.11	CO ₂	Mole-%	9.50
N ₂	Mole-%	87.39	N ₂	Mole-%	85.86	N ₂	Mole-%	86.34
0 ₂	Mole-%	1.23	0 ₂	Mole-%	0.00	O ₂	Mole-%	4.16
H ₂	Mole-%	0.00	H ₂	Mole-%	1.18	H ₂	Mole-%	0.00
СО	ppm	11	СО	ppm	18526	СО	ppm	3
NO_x @ 3 % O ₂	ppm	3460	NO_x @ 3 % O₂	ppm	1670	NO_x @ 3 % O₂	ppm	2850
0	200	400	600 800	1000	1200	1400 1600 1	800 200) ()

CO_{dry} [ppm]

Scenario III: Best Case

- Fuel gas composition changes from H-Gas Ref._GWI to H-Gas 1_GWI or H-Gas 3_GWI... fuel composition is constantly monitored (PGC).
- Volume flows of air and fuel are adapted for constant λ and burner load.
- Technologically, the most sophisticated solution ... but expensive!

Superior Wobbe Index [kWh/m³]

Gas Type	H _{i,n} [kWh/m³]	Q _{Burner} [kW]	ρ _{n,Gas} [kg/m³]	V _{n,Gas} [m³/h]	Air _{min} [m³ _{Air} /m³ _{Fuel}]	λ [-]	V _{n,Air} [m³/h]
H-Gas RefGWI	10.436	4000	0.8004	383.3	9.99	1.05	4021
H-Gas 3_GWI	11.884	4000	0.9043	336.6	11.27	1.05	4536
H-Gas 1_GWI	9.114	4000	0.7110	438.9	8.65	1.05	3482
						\smile	

Scenario III: Total Heat Fluxes

GWI Semi-Industrial Burner Test Rig Experiments

Operating Conditions:

- Burner Load: 200 kW
- Fuel:

- Natural Gas H
- and L
- Air Ratio: 1.15
- Gas Temperature: 25 °C
- Air Temperature: 200 °C

Burner Load and **Air Ratio** remained constant for all experiments !

GWI Semi-Industrial Burner Test Rig Experiments

This is **NOT** industrial standard! See CFD case study in Final Contribution for further information!

ing Conditions:

r Load:

200 kW

and L

1.15

200 °C

- Natural Gas H
- Air Ratio:
- Gas Temperature: 25 °C
- Air Temperature:

Burner Load and Air Ratio remained constant for all experiments !

Test Gases in DVGW G260 Range

GWI Test Rig Results

GWI Test Rig Results

DBI Experiment: Influence of Local Adjustment

Sensitivity Assessment (DVGW Study)

Industry	Process	Efficiency	Safety (Emissions and/or Thermal Overload)	Product Quality
	When switching from lower to higher Wo	obbe Index (maximum pos	sible range according to D	VGW G 260)
t	boilers			
Чеа	luminous radiant heaters			
	direct and indirect drying			
λf	pre-heating (metals)			
Metallurç	thermochem. heat treatment			
	zinc coating			
	melting (non-ferrous metals)			
ics	calcination			
am	brick & tiles manufacturing			
Ce	porcelain firing			
Glass	glass melting (float)			
	glass melting (container), feeder			
	glass finishing treatment			
Other	chemical engineering, plastics			

no intervention required intervention possibly required intervention required

Conclusions

- Natural gas is a very versatile fuel, used in many different industrial processes for very different purposes. About 2/3 of the EU gas consumption do not go into domestic applications... yet gas quality discussions tend to focus on this sector!
- The gas quality criteria used in the gas industry are often not suitable for thermal processing applications. The relevant combustion characteristics cannot be described by one property alone!
- Industrial furnaces and plants usually operate in a very small window of optimum performance with regards to product quality, efficiency and pollutant emissions.
 Fluctuating fuel qualities can have severe consequences.
- Contrary to household appliances, industrial systems are generally designed for a specified local (average) gas composition and operate with very little excess air, depending on the process. They were never designed with fluctuating gas qualities in mind.
- There is no single way to prepare a thermal processing plant to fluctuating gas qualities. Each process is different and requires its own tailor-made solution.

Thank you for your attention!

Dr.-Ing. Jörg Leicher Tel.: +49 201 36 18 278 Mail: <u>leicher@gwi-essen.de</u>

The final report (in German) of this DVGW research project is available at the GWI website:

www.gwi-essen.de